US009152393B1

a2z United States Patent (10) Patent No.: US 9,152,393 B1
Mani et al. 45) Date of Patent: Oct. 6, 2015
(54) DYNAMIC ENTITIES FOR A MODEL OF A 7,925477 B2* 42011 Clune ... 703/6
GRAPHICAL MODELING ENVIRONMENT 8,024,167 B2* 9/2011 Szpak et al. .. - 703/13
8,135,570 B2* 3/2012 Linebarger et al. ... 703/13
. . . 8,260,597 B1* 9/2012 Raghavanetal. 703/13
(71) Applicant: The MathWorks, Inc., Natick, MA 8336,025 B1* 12/2012 Hosagrahara et al. 717111
8,527,941 B2* 9/2013 Clarkcccooeevvrennnne 717/105
(US)
8,577,652 B2* 11/2013 Oh ..cocoovviviviniiicieiie 703/6
(72) Inventors: Ramamurthy Mani, Wayland, MA 8,627,272 B1* 1/2014 Linetal. . . 717/104
(US): Saurabh Mahapatra, Shrewsbury. 2004/0205045 AL* 10/2004 Chenetal. ..o 707/3
MA ,US - Wei Li. F . 1’1 MA ’ 2004/0230404 Al* 112004 Messmeretal. 703/1
(US); Wei Li, Framingham, 2007/0106489 Al* 5/2007 Eryilmaz .. 703/22
(US); Omar A. Orqueda, Natick, MA 2010/0029390 Al* 22010 Wei 463/43
(as) 2010/0211374 Al* 82010 Szpak et al. ... 703/21
2010/0257506 Al* 10/2010 Clarkccocoeveiernene 717/105
(73) Assignee: The MathWorks, Inc., Natick, MA 2012/0005661 Al* 1/2012 Johnstonetal. ... 717/148
(US) ’ ’ 2012/0084069 Al* 4/2012 Cluneetal. ..o, 703/17
)) o) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 “Multimethod Simulation Software—The Only Simulation Tool that
U.S.C. 154(b) by 248 days. Supports Discrete Event, Agent Based and System Dynamics Simu-
lation”, Any Logic Simulation Software, www.anylogic.com, Print
(21) Appl. No.: 13/693,490 date—Nov. 12, 2012, pp. 1-10.
) “The Ptolemy Project—Heterogeneous Modeling and Design”, UC
(22) Filed: Dec. 4,2012 Berkeley EECS Dept., Ptolemy Project Home Page, Ptolemy.eecs.
berkeley.edu, Print date—Nov. 12, 2012, pp. 1-5.
Related U.S. Application Data
% .
(60) Provisional application No. 61/567,456, filed on Dec. cited by examiner
6.2011. Primary Examiner — Don Wong
(51) Int.Cl Assistant Examiner — Roberto E Luna
G0‘6F 5/44 (200601) (74) Allorney, Ag@l’ll, or Firm — Harrlty & Harrlty, LLP
(52) US.CL
CPC e GO6F 8/35(2013.01) 7 ABSTRACT
(58) Field of Classification Search A device receives a dynamic system model for a graphical
None modeling environment, and associates an entity with the

(56)

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
5,608,908 A * 3/1997 Barghouti etal. 719/318
7,519,523 B2* 4/2009 Szpaketal. ... 703/13
7,558,721 B2* 7/2009 Szpaketal. ... 703/14
7,743,361 B2* 6/2010 Clark 717/105
7,761,273 B2* 7/2010 Szpaketal ... 703/13
1200 —g

dynamic system model, the entity including an entity model.
The device defines at least one of a parameter, a configuration,
or a solver setting for the entity model, and performs a simu-
lation of the dynamic system model. The device generates a
system event during the simulation of the dynamic system
model, and modifies at least one of the parameter, the con-
figuration, or the solver setting for the entity model based on
the system event.

20 Claims, 13 Drawing Sheets

GRAFPHICAL MODELING ENVIRONMENT

1210 J{RECEIVE / CREATE DYNAMIC SYSTEM MODEL FOR

1226 ASSOCIATE ENTITY, THAT INCLUDES A MODEL,
WITH DYNAMIC SYSTEM MODEL
1250_/{

SOLVER SETTINGS FOR ENTITY MODEL

1240 PERFORM SWIULATION OF DYNAMIC 8YSTEM

+

1250 ‘/{ GENERATE SYSTEM EVENT DURING SIMULATION

OF DYNAMIC SYSTEM MODEL

(]

MODIFY PARAMETERS / CONFIGURATION /
SOLVER SETTINGS FOR ENTITY MODEL BASED
ON SYSTEM EVENT

[

1270_/{ GENERATE ENTITY EVENT DURING SIMULATION]

DEFINE PARAMETERS / CONFIGURATION /]

1280

1280

MODIFY DYNAMIC SYSTEM MODEL BASED ON

OF DYNAMIC SYSTEM MODEL
1280 "{ ENTITY EVENT

-

FROM DYNAMIC
SYSTEM MODEL

GENERATE CODE ’

US 9,152,393 B1

Sheet 1 of 13

Oct. 6, 2015

U.S. Patent

N 3dAL TA00CW

Bl

}

NALILNG

@
L

e AN JNLES

SINIAZ __
ALILNE

SEINSEY
NOUILYTINNIS

b HIAHIS

b AdAL T3A0W

[=

)

ANIAZ W3LSAS

HOLYHINTD

INEAZ

i

T3A0W

)

FALILNA

N3N0 »

WHLSAS

SALILNTG

HOLYHINGD
ALILNG

SALILNT

B AMTAMIAD

US 9,152,393 B1

Sheet 2 of 13

Oct. 6, 2015

U.S. Patent

[i[74
204

08 - dOIAGA J3ANES

s

2771 yyomLaN

O1¢ - A0IAZA INITO

US 9,152,393 B1

Sheet 3 of 13

Oct. 6, 2015

U.S. Patent

ogt

AOVAHELENI
NOLLYOINOWNGOD

0t

Elelre e
Ldinoe

HOIAZ0 LNdN]

9e

05t

A0iIA30
FOVHOLE

-
5
e/

WO

£L

AHOWHAN
NIV

74

LiNf
ONISSID0Hd

0ke

\\\v SNg

US 9,152,393 B1

Sheet 4 of 13

Oct. 6, 2015

U.S. Patent

0127 0147
ANIDNG SHLIING
NOIENDEXE WOHAVHD

0ty
b7 HOLIGE
SYOOTE WYHOVId
#0014

US 9,152,393 B1

Sheet 5 0of 13

Oct. 6, 2015

U.S. Patent

(085) SINIAT __|
ALLLNG

(08%) SLIN8TH
NCLLY NS

h 4

0¥F%
EERYES

£

N 3dAL THACNW
—
<+
ﬁz-ammm\ﬁ_bzm
® . {oog)
€ ‘04N dNLES
L AdAL THAONW

I e

(045}
INAAT WHLISAS

& "Old

04G/056

s

HOLVHINID |

AININZ

e

{00g) 1RACN

05%

m WALSAS
{1-068) ALILNT
[
= HOLYHANTSD
#END ALIINT
{056) SAILILNT ’
e Op7

US 9,152,393 B1

Sheet 6 of 13

Oct. 6, 2015

U.S. Patent

028
SLNVRIVA
GFA4I00W

(N-0GST ALTING

@
2

018
SINYIRVA
O341G0W

(046} {SILNIAST

WHLBAS

(E-088T ATTING

008
SLINYIRYA
QzZAHA0W

(1-088T ATTING

[113
HOLVHIANTD
INZAZ

US 9,152,393 B1

Sheet 7 of 13

Oct. 6, 2015

U.S. Patent

081
WILSAS L4vHDdlY

5L ALILNA LavdOHIY

e \ 19 I
o7 MU BULIS b papzdag
....................................... 11X &ﬁssssa HIATIOHLNOD &sssssa
. o33e Oae 2104
! 4ivD josye] Hose} OV L) g
Anuzl
027
AMIXY L
X4
. 4172
 S—— % 1V i
v AYRANDY w3

US 9,152,393 B1

Sheet 8 of 13

Oct. 6, 2015

U.S. Patent

e
WBLND

SPI00D SNOIAGIG

SRICOS JUsLnD

Bupiiem
{oss)
Aurmund 38 SSiUBUAQg
&
SPO0D SNOKBLT
SPIH0O JUBLIND
BLi
Aeagxey e soiueuly
&
¥ 9 ¥
7 y
e || oo
shig abiapn
&

$pI0D snniaed
SPIDCO JUBLND
Busuem US|

{oses
aed e soupuig

BIRUIDICOD

woifioT

&

&

{018} 8880 UOIMS

{0z} omiedn

m Q » -

Butiem
LOISHIOD

[#lesen

[oleses

[i]osen L0 e

Ci)
que
snciaasd

¥ 008

US 9,152,393 B1

Sheet 9 of 13

Oct. 6, 2015

U.S. Patent

Is
H
H
H
H
¢
§
H
§
%
H
H
8
H
H
¢
%
H
H
Y

A=H0
ISOIH00Y

: n
{nz6) Aemixe ;fw

w0 0 oo o s o o o 200 o

w6 30 ax o an am ax o o X0 G o

“D“ms 5

{0e6) Aemuny

MO == U0

B30 98]

P

b

- ax oo 0w an o wo o o

g
4

US 9,152,393 B1

Sheet 10 of 13

Oct. 6, 2015

U.S. Patent

501 CEET I
UoONEooT et TV el LORBDOT
FETNES
ABMIXE | 159 - Aemixe] 9%
5 2
Wi
0001
=TT > SeUIpIonn
PEDINY pedadly
pESYH PESY
AT
\
001 SRGL pR— U,
ey SEll Gool 0cGt 5101 grol
afes 2071 Aemixe 7 =
\o.%_xmw . Lw mnmmgﬁ wmmw‘ﬁ g AUzl O yeiony W] 95815 Joee] jd sbesp IS
=i 5 k> o A o \, . 47 ¥ K i i o
ey ssenoy Aemixe} 135 sjepdn AsAmixe] ursae U
GO0
UCHEO0T 4 004 1801L
MBIy 21Bpdn Aeapie

i

US 9,152,393 B1

Sheet 11 of 13

Oct. 6, 2015

U.S. Patent

(AN (xe

asegRRg
[i i1 i
[i i1 1P
[1 1 1N
i i 1 /

uopRLILY (IF

ogil

XL

peay
asegRB(Q

(p==8 8Ll
{sswey sy gLt
As IS heb=s FAN
{puomiieB=sapou’y 9Ll
gLl

Pl

LUCHEUIUE 018 JRUOAMIA = DUOM oLl
OCINY ISMIBI, = SUIBNIONIE AR
Dioopmerepdn uonsuny [

0L

pue 601

(uianed ‘prosloioidulsixeppe R01

_ouchA
m Ayoede) M (SIBISEIEY
m W mm uopRLILY w“m%mc Bleld i e
suaistBIE 4
OFLT

NIOIG B I0) Bioowized 108y
peeizdos-auiuos gikosds o pipl sIsIBLIRIEY
U BSM MOIBC uoHoUNY Jo swBu Aloeds fay

LGHOUN L BUISH USRI YOOI Sigeuan-Iosn

Hensun

US 9,152,393 B1

Sheet 12 of 13

Oct. 6, 2015

U.S. Patent

TAGOW WHALBAS
DINYNAG WO
FA00 ALVHINID

mki
R

N

ANIAZ ALILNG
NO (35¥4 T300N WHLSAS OIWYNAL AJIGOW

4

§

062k

THA0W W3LSAS OINVNAC 40

| NOLLVINIS DNIMNA INIAT ALIINT 31LVHENIO

4

INIAT WILIBAS NO
a3svy 200N ALLLNG 404 SONLLLES HHAT08
{ NOLLYRNSHENGD f SHILFWYHY d AHOORN

4

P

TAGOW WELSAS SINYNAG 40

o

| NOILYTINIIES ONRING LINSAS WALSAS 3LVHINSD |

)

>

Elsleg
WILSAS DINYNAG 40 NOLLYTINNIS Wa04dEd

4

L

RO ALLLND HO-4 SONILLES HIAIOS
{ NOLUVHNDIENOD / SH3LEWYEYd 3Mi-H30

4

THaOW WALSAS ODINVYNAQ HLIA
T1HA0W ¥ SAANTONI LVHL ALIINT 31YID0OSSY

4

INFINOHIANT ONIMTIAONW TYDIHAYHD

4

~ OBCE

" 0421

- OUC1

- 0BT 1

OVl

~ 0CZk

~ 024

HOA 200N WILSAS OINYNAGQ LY [IAII03

e 00Z1

US 9,152,393 B1

Sheet 13 of 13

Oct. 6, 2015

U.S. Patent

|

JmagzEmiwm\fmmﬁﬁzxfauQmZQrﬁ{:ﬁBﬁmw&GQJ mew
“NIFFHYAGHYH 3LN03XE OL 3300 A LvHaNID

HAZLSNTO FLOWZ / HALSNT0 7 83600 FAdLLTNNw
NGO T3A0NW WILSAS DINVYNAG 40 SNOLLYTINNES
FTALUNN FIN03E O 3400 2LvHENTD

4

aoel

US 9,152,393 Bl

1

DYNAMIC ENTITIES FOR A MODEL OF A
GRAPHICAL MODELING ENVIRONMENT

RELATED APPLICATION

This application claims priority under 35 U.S.C. §119
based on U.S. Provisional Patent Application No. 61/567,
456, filed Dec. 6, 2011, the disclosure of which is incorpo-
rated by reference herein in its entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more implementations and, together with the description,
explain these implementations. In the drawings:

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods described herein may be imple-
mented;

FIG. 3 is a diagram of example components of one or more
of the devices of the environment depicted in FIG. 2;

FIG. 4 is a diagram of example functional components of a
technical computing environment (TCE) that may be used by
one or more of the devices of the environment depicted in
FIG. 2;

FIG. 5 is a diagram of example operations capable of being
performed by the TCE;

FIG. 6 is a diagram of further example operations capable
of being performed by the TCE;

FIGS. 7-11 are diagrams of example user interfaces
capable of being generated by the TCE; and

FIGS. 12 and 13 are flow charts of an example process for
providing dynamic entities for a model of a graphical mod-
eling environment.

DETAILED DESCRIPTION

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements.

A technical computing environment (TCE) may provide a
computing environment that allows users to perform tasks
related to disciplines, such as, but not limited to, mathematics,
science, engineering, medicine, business, etc., more effi-
ciently than if the tasks were performed in another type of
computing environment, such as an environment that requires
the user to develop code in a conventional programming
language, such as C++, C, Fortran, Pascal, etc. In one
example, a TCE may include a dynamically-typed program-
ming language (e.g., the M language, a MATLAB® lan-
guage, a MATLAB-compatible language, a MATLAB-like
language, etc.) that can be used to express problems and/or
solutions in mathematical notations.

The TCE may provide a graphical programming or mod-
eling environment (e.g., a block diagram environment) that
generates a dynamic system model. The dynamic system
model may include multiple entities. For example, if the
dynamic system model simulates an automobile factory, enti-
ties may be created for the parts used to manufacture auto-
mobiles. However, such entities are static objects with data
(e.g., attributes) that cannot be modified.

OVERVIEW

Systems and/or methods described herein may provide
dynamic entities for a dynamic system model of a graphical

10

15

20

25

30

35

40

45

50

55

60

65

2

modeling environment (e.g., a TCE). In one example, the
dynamic system model may include blocks that represent an
overall dynamic system to be simulated (e.g., an airport, a
factory floor, etc.). The dynamic entities may include indi-
vidual objects (e.g., an aircraft, a part, a robot, etc.) that may
flow through the overall dynamic system. The dynamic enti-
ties may include models with parameters, configurations,
solver settings, etc. that may be modified by auser of the TCE
and/or based on system events (e.g., an airport runway may
shut down) generated by the dynamic system model. Alter-
natively, or additionally, the dynamic entities may generate
entity events (e.g., an aircraft may arrive at an airport) that
may modify a behavior of the dynamic system model.

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein. As shown in FIG. 1, a computing
environment, such as a TCE, may generate a dynamic system
model. The dynamic system model may include a block dia-
gram model with one or more model elements (e.g., blocks),
one or more inputs, and one or more outputs. Each of the
model elements may include a representation (e.g., a block)
of'a hardware device, a system, a subsystem, etc. of a system
being modeled by the TCE. In one example, the dynamic
system model may include an entity generator block, a queue
block, an event generator block, and a server block.

The entity generator block may generate one or more
dynamic entities (e.g., entity 1 through entity N) for the
dynamic system model. The entities may include individual
objects (e.g., an aircraft, a part, a robot, etc.) that may flow
through the dynamic system model. Each of the entities may
include an entity model of a particular type (e.g., model type
1 through model type N). For example, the entity model may
include a tool used to model systems via state machines and
flow charts; a tool to model, simulate, and analyze dynamic
systems; a tool to model and simulate physical systems; etc.
The entity generator block may provide setup information to
each of the entities, such as model parameters, model con-
figurations, model solver settings, etc. The entity generator
block may provide the entities to the queue block.

The queue block may receive the entities, and may place
the entities in a queue. For example, if the dynamic system
model is an airport, the queue block may place information
associated with an aircraft in a queue for awaiting takeoff
from the airport. An entity may remain in the queue until the
dynamic system model determines that the entity is to be
further utilized by the dynamic system model. The queue
block may provide one or more of the entities to the event
generator block when requested by the dynamic system
model.

The event generator block may receive the entities, and
may generate system events based on information associated
with the entities and/or based on simulation of the dynamic
system model. A system event may include an event that
affects the dynamic system model. For example, if the
dynamic system model is a factory floor, the system event
may include a new machine coming online for the factory
floor. The event generator block may provide the system
events to one or more of the entities. The entities receiving the
system events may modify the setup information (e.g., the
parameters, configurations, solver settings, etc. for the entity
models) based on the system events. The event generator
block may provide the entities and/or the system events to the
server block.

The server block may receive the entities and/or the system
events from the event generator block, and may receive entity
events generated by the entities. An entity event may modify
behavior of the dynamic system model, and may include an
event that is generated based on changing conditions in an

US 9,152,393 Bl

3

entity model (e.g., an aircraft may unload passengers). The
server block may generate simulation results based on the
entities, the system events, and/or the entity events. In one
example, the simulation results may include code generated
from the dynamic system model.

The terms “code” and “program code,” as used herein, are
to beused interchangeably and are to be broadly interpreted to
include text-based code that may not require further process-
ing to execute (e.g., C++ code, Hardware Description Lan-
guage (HDL) code, very-high-speed integrated circuits (VH-
SIC) HDL(VHDL) code, Verilog, Java, and/or other types of
hardware or software based code that may be compiled and/or
synthesized); binary code that may be executed (e.g., execut-
able files that may directly be executed by an operating sys-
tem, bitstream files that can be used to configure a field
programmable gate array (FPGA), Java byte code, object files
combined together with linker directives, source code, make-
files, etc.); text files that may be executed in conjunction with
other executables (e.g., Python text files, a collection of
dynamic-link library (DLL) files with text-based combining,
configuration information that connects pre-compiled mod-
ules, an extensible markup language (XML) file describing
module linkage, etc.); etc. In one example, code may include
different combinations of the above-identified classes (e.g.,
text-based code, binary code, text files, etc.). Alternatively, or
additionally, code may include code generated using a
dynamically-typed programming language (e.g., the M lan-
guage, a MATLAB® language, a MATLAB-compatible lan-
guage, a MATLAB-like language, etc.) that can be used to
express problems and/or solutions in mathematical notations.
Alternatively, or additionally, code may be of any type, such
as function, script, object, etc., and a portion of code may
include one or more characters, lines, etc. of the code.

Example Environment Arrangement

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods described herein may be
implemented. As illustrated, environment 200 may include a
client device 210 interconnected with a server device 220 via
a network 230. Components of environment 200 may inter-
connect via wired and/or wireless connections. A single client
device 210, server device 220, and network 230 have been
illustrated in FIG. 2 for simplicity. In practice, environment
200 may include more client devices 210, server devices 220,
and/or networks 230. In one example implementation, client
device 210 and server device 220 may be provided in a single
device or may be provided in separate devices.

Client device 210 may include one or more devices that are
capable of communicating with server device 220 via net-
work 230. For example, client device 210 may include a
laptop computer, a personal computer, a tablet computer, a
desktop computer, a workstation computer, a smart phone, a
personal digital assistant (PDA), and/or other computation
and communication devices.

Server device 220 may include one or more server devices,
or other types of computation and communication devices,
that gather, process, and/or provide information in a manner
described herein. Server device 220 may include a device that
is capable of communicating with client device 210 (e.g., via
network 230). In one example, server device 220 may include
one or more laptop computers, personal computers, worksta-
tion computers, servers, central processing units (CPUs),
graphical processing units (GPUs), application-specific inte-
grated circuits (ASICs), field-programmable gate arrays (FP-
GAs), etc. and/or software (e.g., a simulator) executing on the
aforementioned devices. In one example, server device 220

35

40

45

55

4

may include TCE 240 and may perform some or all of the
functionality described herein for client device 210. Alterna-
tively, server device 220 may be omitted and client device 210
may perform all of the functionality described herein for
client device 210.

Network 230 may include a network, such as a local area
network (LAN), a wide area network (WAN), a metropolitan
area network (MAN), a telephone network, such as the Public
Switched Telephone Network (PSTN), an intranet, the Inter-
net, or a combination of networks.

TCE 240 may be provided within a computer-readable
medium of client device 210. Alternatively, or additionally,
TCE 240 may be provided in another device (e.g., server
device 220) that is accessible by client device 210. TCE 240
may include hardware or a combination of hardware and
software that provides a computing environment that allows
users to perform tasks related to disciplines, such as, but not
limited to, mathematics, science, engineering, medicine,
business, etc., more efficiently than if the tasks were per-
formed in another type of computing environment, such as an
environment that required the user to develop code in a con-
ventional programming language, such as C++, C, Fortran,
Pascal, etc. In one implementation, TCE 240 may include a
dynamically-typed programming language (e.g., the M lan-
guage, a MATLAB® language, a MATLAB-compatible lan-
guage, a MATLAB-like language, etc.) that can be used to
express problems and/or solutions in mathematical notations.

For example, TCE 240 may use an array as a basic element,
where the array may not require dimensioning. These arrays
may be used to support array-based programming where an
operation may apply to an entire set of values included in the
arrays. Array-based programming may allow array-based
operations to be treated as high-level programming that may
allow, for example, operations to be performed on entire
aggregations of data without having to resort to explicit loops
of'individual non-array operations. In addition, TCE 240 may
be adapted to perform matrix and/or vector formulations that
can be used for data analysis, data visualization, application
development, simulation, modeling, algorithm development,
etc. These matrix and/or vector formulations may be used in
many areas, such as statistics, image processing, signal pro-
cessing, control design, life sciences modeling, discrete event
analysis and/or design, state based analysis and/or design, etc.

TCE 240 may further provide mathematical functions and/
or graphical tools (e.g., for creating plots, surfaces, images,
volumetric representations, etc.). In one implementation,
TCE 240 may provide these functions and/or tools using
toolboxes (e.g., toolboxes for signal processing, image pro-
cessing, data plotting, parallel processing, etc.). Alterna-
tively, or additionally, TCE 240 may provide these functions
as block sets or in another way, such as via a library, etc.

TCE 240 may be implemented as a text-based environment
(e.g., MATLAB software; Octave; Python; Comsol Script;
MATRIXx from National Instruments; Mathematica from
Wolfram Research, Inc.; Mathcad from Mathsoft Engineer-
ing & Education Inc.; Maple from Maplesott; Extend from
Imagine That Inc.; Scilab from The French Institution for
Research in Computer Science and Control (INRIA); Vir-
tuoso from Cadence; Modelica or Dymola from Dynasim;
etc.); a graphically-based environment (e.g., Simulink® soft-
ware, Stateflow® software, SimEvents® software, Sim-
scape™ software, etc., by The MathWorks, Inc.; VisSim by
Visual Solutions; LabView® by National Instruments;
Dymola by Dynasim; SoftWIRE by Measurement Comput-
ing; WiT by DALSA Coreco; VEE Pro or SystemVue by
Agilent; Vision Program Manager from PPT Vision; Khoros
from Khoral Research; Gedae by Gedae, Inc.; Scicos from

US 9,152,393 Bl

5

(INRIA); Virtuoso from Cadence; Rational Rose from IBM;
Rhopsody or Tau from Telelogic; Ptolemy from the Univer-
sity of California at Berkeley; aspects of a Unified Modeling
Language (UML) or SysML environment; etc.); or another
type of environment, such as a hybrid environment that
includes one or more of the above-referenced text-based envi-
ronments and one or more of the above-referenced graphi-
cally-based environments.

TCE 240 may include a programming language (e.g., the
MATLAB language) that may be used to express problems
and/or solutions in mathematical notations. The program-
ming language may be dynamically typed and/or array-
based. In a dynamically typed array-based computing lan-
guage, data may be contained in arrays and data types of the
data may be determined (e.g., assigned) at program execution
time.

For example, suppose a program, written in a dynamically
typed array-based computing language, includes the follow-
ing statements:

A=‘hello’

A=int32([1, 2])

A=[1.1,2.2,33].

Now suppose the program is executed, for example, in a
TCE, such as TCE 240. During run-time, when the statement
“A=‘hello’” is executed the data type of variable “A” may be
a string data type. Later when the statement “A=int32([1, 2])”
is executed the data type of variable “A” may be a 1-by-2 array
containing elements whose data type are 32 bit integers.
Later, when the statement “A=[1.1, 2.2, 3.3]” is executed,
since the language is dynamically typed, the data type of
variable “A” may be changed from the above 1-by-2 array to
a 1-by-3 array containing elements whose data types are
floating point. As can be seen by this example, data in a
program written in a dynamically typed array-based comput-
ing language may be contained in an array. Moreover, the data
type of the data may be determined during execution of the
program. Thus, in a dynamically type array-based computing
language, data may be represented by arrays and data types of
data may be determined at run-time.

TCE 240 may provide mathematical routines and a high-
level programming language suitable for non-professional
programmers and may provide graphical tools that may be
used for creating plots, surfaces, images, volumetric repre-
sentations, or other representations. TCE 240 may provide
these routines and/or tools using toolboxes (e.g., toolboxes
for signal processing, image processing, data plotting, paral-
lel processing, etc.). TCE 240 may also provide these routines
in other ways, such as, for example, via a library, local or
remote database (e.g., a database operating in a computing
cloud), remote procedure calls (RPCs), and/or an application
programming interface (API). TCE 240 may be configured to
improve runtime performance when performing computing
operations. For example, TCE 240 may include a just-in-time
(JIT) compiler.

Although FIG. 2 shows example components of environ-
ment 200, in other implementations, environment 200 may
include fewer components, different components, differently
arranged components, and/or additional components than
those depicted in FIG. 2. Alternatively, or additionally, one or
more components of environment 200 may perform one or
more other tasks described as being performed by one or more
other components of environment 200.

Example Device Architecture

FIG. 3 is an example diagram of a device 300 that may
correspond to one or more of the devices of environment 200.

20

25

30

40

45

65

6

As illustrated, device 300 may include a bus 310, a processing
unit 320, a main memory 330, a read-only memory (ROM)
340, a storage device 350, an input device 360, an output
device 370, and/or a communication interface 380. Bus 310
may include a path that permits communication among the
components of device 300.

Processing unit 320 may include one or more processors,
microprocessors, or other types of processing units that may
interpret and execute instructions. Main memory 330 may
include one or more random access memories (RAMs) or
other types of dynamic storage devices that may store infor-
mation and/or instructions for execution by processing unit
320. ROM 340 may include one or more ROM devices or
other types of static storage devices that may store static
information and/or instructions for use by processing unit
320. Storage device 350 may include a magnetic and/or opti-
cal recording medium and its corresponding drive.

Input device 360 may include a mechanism that permits a
user to input information to device 300, such as a keyboard, a
camera, an accelerometer, a gyroscope, a mouse, a pen, a
microphone, voice recognition and/or biometric mecha-
nisms, a remote control, a touch screen, a neural interface, etc.
Output device 370 may include a mechanism that outputs
information to the user, including a display, a printer, a
speaker, etc. Communication interface 380 may include any
transceiver-like mechanism that enables device 300 to com-
municate with other devices, networks, and/or systems. For
example, communication interface 380 may include mecha-
nisms for communicating with another device or system via a
network.

As described herein, device 300 may perform certain
operations in response to processing unit 320 executing soft-
ware instructions contained in a computer-readable medium,
such as main memory 330. A computer-readable medium
may be defined as a non-transitory memory device. A
memory device may include space within a single physical
memory device or spread across multiple physical memory
devices. The software instructions may be read into main
memory 330 from another computer-readable medium, such
as storage device 350, or from another device via communi-
cation interface 380. The software instructions contained in
main memory 330 may cause processing unit 320 to perform
processes described herein. Alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to implement processes described herein. Thus,
implementations described herein are not limited to any spe-
cific combination of hardware circuitry and software.

Although FIG. 3 shows example components of device
300, in other implementations, device 300 may include fewer
components, different components, differently arranged
components, and/or additional components than depicted in
FIG. 3. Alternatively, or additionally, one or more compo-
nents of device 300 may perform one or more other tasks
described as being performed by one or more other compo-
nents of device 300.

Example Technical Computing Environment

FIG. 4 is a diagram of example functional components of
TCE 240. In one implementation, the functions described in
connection with FIG. 4 may be performed by one or more
components of device 300 (FIG. 3) and/or by one or more
devices 300. As shown in FIG. 4, TCE 240 may include a
block diagram editor 410, graphical entities 420, blocks 430,
and/or an execution engine 440.

Block diagram editor 410 may include hardware or a com-
bination of hardware and software that may be used to graphi-

US 9,152,393 Bl

7

cally specity models of dynamic systems. In one implemen-
tation, block diagram editor 410 may permit a userto perform
actions, such as construct, edit, display, annotate, save, and/or
print a graphical model (e.g., a block diagram that visually
and/or pictorially represents a dynamic system). In another
implementation, block diagram editor 410 may permit a user
to create and/or store data relating to graphical entities 420.

A textual interface may be provided to permit interaction
with block diagram editor 410. A user may write scripts that
perform automatic editing operations on a model using the
textual interface. For example, the textual interface may pro-
vide a set of windows that may act as a canvas for the model,
and may permit user interaction with the model. A model may
include one or more windows depending on whether the
model is partitioned into multiple hierarchical levels.

Graphical entities 420 may include hardware or a combi-
nation of hardware and software that may provide entities
(e.g., signal lines, buses, etc.) that represent how data may be
communicated between functional and/or non-functional
units and blocks 430 of a model. Blocks 430 may include
fundamental mathematical elements of a block diagram
model.

Execution engine 440 may include hardware or a combi-
nation of hardware and software that may process a graphical
model to produce simulation results, may convert the graphi-
cal model into executable code, and/or may perform other
analyses and/or related tasks. In one implementation, for a
block diagram graphical model, execution engine 440 may
translate the block diagram into executable entities (e.g., units
of execution) following the layout of the block diagram. The
executable entities may be compiled and/or executed on a
device (e.g., client device 210) to implement the functionality
specified by the model.

Graphical models may include entities with relationships
between the entities, and the relationships and/or the entities
may have attributes associated with them. The entities may
include model elements, such as blocks 430 and ports. The
relationships may include model elements, such as lines (e.g.,
connector lines) and references. The attributes may include
model elements, such as value information and meta infor-
mation for the model element associated with the attributes.
Graphical models may be associated with configuration
information. The configuration information may include
information for the graphical model, such as model execution
information (e.g., numerical integration schemes, fundamen-
tal execution period, etc.), model diagnostic information
(e.g., whether an algebraic loop should be considered an error
or result in a warning), model optimization information (e.g.,
whether model elements should share memory during execu-
tion), model processing information (e.g., whether common
functionality should be shared in code that is generated for a
model), etc.

Additionally, or alternatively, a graphical model may have
executable semantics and/or may be executable. An execut-
able graphical model may be a time based block diagram. A
time based block diagram may consist, for example, of blocks
(e.g., blocks 430) connected by lines (e.g., connector lines).
The blocks may consist of elemental dynamic systems, such
as a differential equation system (e.g., to specify continuous-
time behavior), a difference equation system (e.g., to specify
discrete-time behavior), an algebraic equation system (e.g., to
specify constraints), a state transition system (e.g., to specity
finite state machine behavior), an event based system (e.g., to
specify discrete event behavior), etc. The lines may represent
signals (e.g., to specify input/output relations between blocks
or to specify execution dependencies between blocks), vari-
ables (e.g., to specify information shared between blocks),

10

15

20

25

30

35

40

45

50

55

60

65

8

physical connections (e.g., to specify electrical wires, pipes
with volume flow, rigid mechanical connections, etc.), etc.
The attributes may consist of meta information such as
sample times, dimensions, complexity (whether there is an
imaginary component to a value), data type, etc. associated
with the model elements.

In a time based block diagram, ports may be associated
with blocks (e.g., blocks 430). A relationship between two
ports may be created by connecting a line (e.g., a connector
line) between the two ports. Lines may also, or alternatively,
be connected to other lines, for example by creating branch
points. For instance, three or more ports can be connected by
connecting a line to each ofthe ports, and by connecting each
of the lines to a common branch point for all of the lines. A
common branch point for the lines that represent physical
connections may be a dynamic system (e.g., by summing all
variables of a certain type to O or by equating all variables of
a certain type). A port may be an input port, an output port, an
enable port, a trigger port, a function-call port, a publish port,
a subscribe port, an exception port, an error port, a physics
port, an entity flow port, a data flow port, a control flow port,
etc.

Relationships between blocks (e.g., blocks 430) may be
causal and/or non-causal. For example, a model may include
a block that represents a continuous-time integration block
that may be causally related to a data logging block by using
a line (e.g., a connector line) to connect an output port of the
continuous-time integration block to an input port of the data
logging block. Further, during execution of the model, the
value stored by the continuous-time integrator may change as
the current time of the execution progresses. The value of the
state of the continuous-time integrator may be available on
the output port, and the connection with the input port of the
data logging block may make this value available to the data
logging block.

A sample time may be associated with the elements of a
graphical model. For example, a graphical model may include
ablock (e.g., block 430) with a continuous sample time, such
as a continuous-time integration block that may integrate an
input value as a time of execution progresses. This integration
may be specified by a differential equation. During execution,
the continuous-time behavior may be approximated by a
numerical integration scheme that is part of a numerical
solver. The numerical solver may take discrete steps to
advance the execution time, and these discrete steps may be
constant during an execution (e.g., fixed step integration) or
may be variable during an execution (e.g., variable-step inte-
gration).

Alternatively, or additionally, a graphical model may
include a block (e.g., block 430) with a discrete sample time
such as a unit delay block that may output values of a corre-
sponding input after a specific delay. This delay may be a time
interval, and this interval may determine a sample time of the
block. During execution, the unit delay block may be evalu-
ated each time the execution time has reached a point in time
where an output of the unit delay block may change. These
points in time may be statically determined based on a sched-
uling analysis of the graphical model before starting execu-
tion.

Alternatively, or additionally, a graphical model may
include a block (e.g., block 430) with an asynchronous
sample time, such as a function-call generator block that may
schedule a connected block to be evaluated at a non-periodic
time. During execution, a function-call generator block may
evaluate an input, and, when the input attains a specific value
when the execution time has reached a point in time, the

US 9,152,393 Bl

9

function-call generator block may schedule a connected
block to be evaluated at this point in time and before advanc-
ing execution time.

Further, the values of attributes of a graphical model may
be inferred from other elements of the graphical model or
attributes of the graphical model. For example, the graphical
model may include a block (e.g., block 430), such as a unit
delay block, that may have an attribute that specifies a sample
time of the block. When a graphical model has an execution
attribute that specifies a fundamental execution period, the
sample time of the unit delay block may be inferred from this
fundamental execution period.

As another example, the graphical model may include two
unit delay blocks (e.g., blocks 430) where an output of the
first of the two unit delay blocks is connected to an input of the
second of the two unit delay block. The sample time of the
first unit delay block may be inferred from the sample time of
the second unit delay block. This inference may be performed
by propagation of model element attributes such that, after
evaluating a sample time attribute of the second unit delay
block, a graph search proceeds by evaluating a sample time
attribute of the first unit delay block since the first unit delay
block is directly connected to the second unit delay block.

The values of attributes of a graphical model may be set to
characteristics settings, such as one or more inherited set-
tings, one or more default settings, etc. For example, the data
type of a variable that is associated with a block (e.g., block
430) may be set to a default, such as a double. Because of the
default setting, an alternate data type (e.g., a single, an integer,
a fixed point, etc.) may be inferred based on attributes of
elements that the graphical model comprises (e.g., the data
type of a variable associated with a connected block) and/or
attributes of the graphical model. As another example, the
sample time of a block may be set to be inherited. In the case
of an inherited sample time, a specific sample time may be
inferred based on attributes of elements that the graphical
model comprises and/or attributes of the graphical model
(e.g., a fundamental execution period).

Although FIG. 4 shows example functional components of
TCE 240, in other implementations, TCE 240 may include
fewer functional components, different functional compo-
nents, differently arranged functional components, and/or
additional functional components than depicted in FIG. 4.
Alternatively, or additionally, one or more functional compo-
nents of TCE 240 may perform one or more other tasks
described as being performed by one or more other functional
components of TCE 240.

Example Technical Computing Environment
Operations

FIG. 5 is a diagram of example operations capable of being
performed by TCE 240. TCE 240 may include the features
described above in connection with, for example, one or more
of FIGS. 1-4. The functions described in connection with
FIG. 5 may be performed by one or more components of
device 300 (FIG. 3) and/or by one or more devices 300.

As further shown in FIG. 5, TCE 240 may generate a
dynamic system model 500. Dynamic system model 500 may
include a block diagram model with one or more model
elements (e.g., blocks), one or more inputs, and one or more
outputs. Each of the model elements may include a represen-
tation (e.g., a block) of a hardware device, a system, a sub-
system, etc. of a system being modeled by TCE 240. In one
example, dynamic system model 500 may include an entity
generator block 510, a queue block 520, an event generator
block 530, and a server block 540.

10

15

20

25

30

35

40

45

50

55

60

65

10

Entity generator block 510 may generate one or more
dynamic entities 550-1 through 550-N (collectively referred
to herein as “entities 550,” and, in some instances, singularly
as “entity 550”) for dynamic system model 500. Entities 550
may include a representation of individual objects (e.g., rep-
resentations of an aircraft, a part, a robot, etc.) that may flow
through dynamic system model 500. Each of entities 550 may
include an entity model of a particular type (e.g., model type
1 through model type N). The entity model types may be the
same or different for one or more of entities 550. In one
example, the entity model may include a tool used to model
systems via state machines and flow charts; a tool to model,
simulate, and analyze dynamic systems; a tool to model and
simulate physical systems; etc.

Entity generator block 510 may provide setup information
560 to each of entities 550. In one example, one or more of
entities 550 may receive the same or different setup informa-
tion 560. Setup information 560 may be received from or
defined by a user of TCE 240. Setup information 560 may
include parameters, configurations, solver settings, etc. for
the models of entities 550. The parameters may include infor-
mation used to describe the models of entities. For example,
the parameters may include a parameter to enable block
reduction optimization, a parameter to enable Boolean mode,
a parameter to specify initial state name or values, etc. The
configurations may include information specifying settings
to determine a type of solver used by the model, import and
export settings, and other values that determine how the
model executes. The solver settings may include information
enabling selection of a variable-step solver or a fixed-step
solver, selection from explicit and implicit solvers, selection
of a discrete solver or a continuous solver, etc. As further
shown in FIG. 5, entity generator block 510 may provide
entities 550 to queue block 520.

Queue block 520 may receive entities 550, and may place
entities 550 in a queue. For example, if dynamic system
model 500 is a television assembly plant, queue block 520
may place information regarding television components in a
queue until the components are needed in the assembly pro-
cess. An entity 550 may remain in the queue until dynamic
system model 500 determines that entity 550 is to be further
utilized by dynamic system model 500. Queue block may
provide one or more of the entities 550 to event generator
block 530 when requested by dynamic system model 500.

Event generator block 530 may receive entities 550, and
may generate system events 570 based on information asso-
ciated with entities 550 and/or based on simulation of
dynamic system model 500. System event 570 may include an
event that affects dynamic system model 500. For example, if
dynamic system model 500 is an interstate highway, system
event 570 may include construction closing down one lane of
the highway. Alternatively, or additionally, a user of TCE 240
may define system events 570 for event generator block 530.
Event generator block 530 may provide system events 570 to
one or more entities 550. Entities 550 receiving system events
570 may modify setup information 560 (e.g., the parameters,
configurations, solver settings, etc. for the entity models)
based on system events 570. Event generator block 530 may
provide entities 550 and/or system events 570 to server block
540.

Server block 540 may receive entities 550 and/or system
events 570 from event generator block 530, and may receive
entity events 580 generated by entities 550. In one example
implementation, entity events 580 may be defined by auser of
TCE 240. Entity event 580 may include an event that is
generated based on changing conditions in an entity model
(e.g., an aircraft may load passengers). Entity event 580 may

US 9,152,393 Bl

11

modify behavior of dynamic system model 500. For example,
if dynamic system model 500 is an airport and entity event
580 includes a particular aircraft taking off from the airport,
entity event 580 may modify dynamic system model 500 by
removing entity 550 associated with the particular aircraft.

Server block 540 may generate simulation results 590
based on entities 550, system events 570, and/or entity events
580. Server block 540 may output (e.g., provide for display)
and/or store simulation results 590. In one example, simula-
tion results 590 may include code generated from dynamic
system model 500. The code may execute multiple simula-
tions of dynamic system model 500 using multiple cores of a
single processor, using a local cluster of computing devices,
using a remote cluster of computing devices (e.g., a cloud
network), etc. Alternatively, or additionally, the code may
execute hardware-in-the-loop simulations of dynamic system
model 500. For example, some entities 550 may be connected
to dynamic system model 500 as physical hardware (e.g., a
control system in a vehicle) while other entities 550 may be
connected to dynamic system model 500 as simulation enti-
ties. Alternatively, all of entities 550 may be connected to
dynamic system model 500 as simulation entities.

In one example implementation, TCE 240 may associate
dynamic system model 500 with each entity 550 generated
and/or modified during simulation of dynamic system model
500. One or more instances of each entity 550 may be pro-
vided for dynamic system model 500. For example, entity 550
may be created for a particular aircraft and an airport may
include several instances of the particular aircraft. TCE 240
may enable a user to graphically inspect each instance of an
associated entity 550 and to step through a simulation of
dynamic system model 500 (e.g., in a backward or forward
direction).

Although FIG. 5 shows example operations capable of
being performed by TCE 240, in other implementations, TCE
240 may perform fewer operations, different operations, and/
or additional operations than depicted in FIG. 5. Alterna-
tively, or additionally, one or more components of FIG. 5 may
perform one or more other tasks described as being per-
formed by one or more other components of FIG. 5.

FIG. 6 is a diagram of further example operations capable
of being performed by TCE 240. TCE 240 may include the
features described above in connection with, for example, one
or more of FIGS. 1-5. The functions described in connection
with FIG. 6 may be performed by one or more components of
device 300 (FIG. 3) and/or by one or more devices 300.

As shownin FIG. 6, event generator block 530 may provide
one or more system events 570 to one or more entities 550. As
described above, entities 550 receiving system events 570
may modify setup information 560 (e.g., the parameters, con-
figurations, solver settings, etc. for the entity models) based
on system events 570. In one example implementation, enti-
ties 550 receiving system events 570 may modify one or more
variants associated with entities 550. The variants may enable
an individual portion (e.g., a block, an element, a component,
amodule, etc.) ofamodel (e.g., of entity 550) to have multiple
implementations that may be swapped in and out by a user of
TCE 240. Within the model, a block (e.g., a subsystem, a
model reference, etc.) may have multiple variants that are
programmatically controlled. For example, a first entity
550-1 may modify variants associated with the model of first
entity 550-1 to create modified variants 600. A second entity
550-2 may modify variants associated with the model of
second entity 550-2 to create modified variants 610. An Nth
entity 550-N may modify variants associated with the model
of Nth entity 550-N to create modified variants 620.

10

15

20

25

30

35

40

45

50

55

60

65

12

Although FIG. 6 shows example operations capable of
being performed by TCE 240, in other implementations, TCE
240 may perform fewer operations, different operations, and/
or additional operations than depicted in FIG. 6. Alterna-
tively, or additionally, one or more components of FIG. 6 may
perform one or more other tasks described as being per-
formed by one or more other components of FIG. 6.

Example TCE System Model User Interfaces

FIGS. 7-11 are diagrams of example user interfaces 700-
1100 capable of being generated by TCE 240 (FIGS. 5 and 6).
In one example, user interfaces 700-1100 may correspond to
information associated with TCE model 510 and/or entities
550 (FIGS. 5 and 6). User interfaces 700-1100 may include
graphical user interfaces (GUIs) or non-graphical user inter-
faces, such as text-based interfaces. User interfaces 700-1100
may provide information to users via customized interfaces
(e.g., proprietary interfaces) and/or other types of interfaces
(e.g., browser-based interfaces, etc.). User interfaces 700-
1100 may receive user inputs via one or more input devices,
may be user-configurable (e.g., a user may change the sizes of
user interfaces 700-1100, information displayed in user inter-
faces 700-1100, color schemes used by user interfaces 700-
1100, positions of text, images, icons, windows, etc., in user
interfaces 700-1100, etc.), and/or may not be user-config-
urable. Information associated with user interfaces 700-1100
may be selected and/or manipulated by a user of client device
210 and/or server device 220 (e.g., via a touch screen display,
a mouse, a keyboard, a keypad, voice commands, etc.).

As shown in FIG. 7, user interface 700 may include a
variety of information associated with dynamic system model
500. For example, user interface 700 may include dynamic
system model 500 that simulates an airport management sys-
tem for an airport. Dynamic system model 500 may include a
takeoff controller block 710, a gate block 720, a taxiway
block 730, a runway block 740, and information regarding
one or more aircraft entities 750.

Takeoff controller block 710 may include a block that
simulates an aircraft takeoff management system for the air-
port. The aircraft takeoff management system may control
arrivals and departures of aircraft from the airport. For
example, the aircraft takeoff management system may issue a
takeoff permit to an aircraft entity 750 located at gate block
720. Takeoff controller block 710 may model aircraft traffic
flow as entities (e.g., aircraft entity 750).

Gate block 720 may include a block that simulates a gate at
the airport. Aircraft entity 750 may wait at gate block 720
until takeoff controller block 710 issues a takeoff permit for
aircraft entity 750. For example, gate block 720 may receive
a takeoff permit from takeoff controller block 710, and air-
craft entity 750 may exit gate block 720 and move to taxiway
block 730 when the takeoff permit is received.

Taxiway block 730 may include a block that simulates a
taxiway at the airport. Aircraft entity 750 may enter taxiway
block 730 when aircraft entity 750 exits gate block 720. Inone
example, a topology for taxiway block 730 may be defined
using fundamental building blocks. A scheduler may route
aircraft entities 750 in taxiway block 730 based on priorities
assigned to aircraft entities 750. Aircraft entity 750 may exit
taxiway block 730, and enter runway block 740, when run-
way block 740 is clear for aircraft entity 750.

Runway block 740 may include a block that simulates a
runway of the airport. Aircraft entity 750 may enter runway
block 740 when aircraft entity 750 exits taxiway block 730. In
one example, aircraft entity 750 may enter runway block 740
when aircraft entity 750 is cleared for takeoff from runway
block 740. After aircraft entity 750 takes off from the runway,

US 9,152,393 Bl

13

runway block 740 may provide, to takeoff controller block
710, an indication that aircraft entity 750 has departed.

Aircraft entity 750 may include a representation of an
individual object (e.g., an aircraft) that may flow through
dynamic system model 500 (e.g., the airport management
system). Aircraft entity 750 may include an entity model of a
particular type. For example, aircraft entity 750 may include
an aircraft system model 760. In one implementation, aircraft
system model 760 may include a model for aircraft dynamics
with pilot behavior (e.g., as described below in connection
with FIG. 8), a model for a collision detection system (e.g., as
described below in connection with FIG. 9), etc.

Although user interface 700 depicts a variety of informa-
tion, in other implementations, user interface 700 may depict
less information, different information, differently arranged
information, and/or additional information than depicted in
FIG. 7.

In one example, a user may access user interface 800 by
selecting a menu option, by selecting aircraft system model
760, etc. As shown in FIG. 8, user interface 800 may include
a variety of information associated with a model (e.g., a
Simulink model) for aircraft dynamics with pilot behavior. In
one example, the model for aircraft dynamics may include a
switch case block 810, a logical operator block 820, a gate
dynamics block 830, a taxiway dynamics block 840, a runway
dynamics block 850, a merge block 860, and a bus block 870.

Switch case block 810 may include a block that switches
between gate dynamics block 830, taxiway dynamics block
840, and runway dynamics block 850 based on a previous
attribute (e.g., a location) associated with an aircraft. If the
previous attribute indicates that the aircraft is located at a gate
(e.g., gate block 720, FIG. 7), switch case block 810 may
proceed to gate dynamics block 830. If the previous attribute
indicates that the aircraft is located at a taxiway (e.g., taxiway
block 730, FIG. 7), switch case block 810 may proceed to
taxiway dynamics block 840. If the previous attribute indi-
cates that the aircraft is located at a runway (e.g., runway
block 740, FIG. 7), switch case block 810 may proceed to
runway dynamics block 850.

Logical block 820 may include an OR block that receives a
collision warning for the aircraft, and provides the collision
warning to gate dynamics block 830, taxiway dynamics block
840, or runway dynamics block 850 based on where the
aircraft is located. If the aircraft is located at the gate (e.g.,
gate block 720, FIG. 7), logical block 820 may provide the
collision warning to gate dynamics block 830. If the aircraftis
located at the taxiway (e.g., taxiway block 730, FIG. 7),
logical block 820 may provide the collision warning to taxi-
way dynamics block 840. If the aircraft is located at the
runway (e.g., runway block 740, FIG. 7), logical block 820
may provide the collision warning to runway dynamics block
850.

Gate dynamics block 830 may include a block that simu-
lates aircraft dynamics at the gate. Gate dynamics block 830
may receive the collision warning from logical operator 820
and may receive a previous attribute (e.g., previous coordi-
nates) associated with the aircraft. Gate dynamics block 830
may generate current coordinates for the aircraft (e.g., coor-
dinates that avoid a collision) based on the collision warning
and the previous coordinates, and may provide the current
coordinates to merge block 860.

Taxiway dynamics block 840 may include a block that
simulates aircraft dynamics at the taxiway. Taxiway dynam-
ics block 840 may receive the collision warning from logical
operator 820 and may receive a previous attribute (e.g., pre-
vious coordinates) associated with the aircraft. Taxiway
dynamics block 840 may generate current coordinates for the

10

20

25

30

35

40

45

50

55

60

65

14

aircraft (e.g., coordinates that avoid a collision) based on the
collision warning and the previous coordinates, and may pro-
vide the current coordinates to merge block 860.

Runway dynamics block 850 may include a block that
simulates aircraft dynamics at the runway. Runway dynamics
block 850 may receive the collision warning from logical
operator 820 and may receive a previous attribute (e.g., pre-
vious coordinates) associated with the aircraft. Runway
dynamics block 850 may generate current coordinates for the
aircraft (e.g., coordinates that avoid a collision) based on the
collision warning and the previous coordinates, and may pro-
vide the current coordinates to merge block 860.

Merge block 860 may include a block that receives the
current coordinates of the aircraft from gate dynamics block
830, taxiway dynamics block 840, or runway dynamics block
850. Merge block 860 may merge the current coordinates
together, and may provide the merged current coordinates to
bus block 870.

Bus block 870 may include a block that receives a previous
attribute (e.g., a location) associated with the aircraft, and
receives the merged current coordinates from merge block
860. Bus block 870 may generate a current attribute (e.g., a
current location) associated with the aircraft based on the
previous attribute and the merged current coordinates.

Although user interface 800 depicts a variety of informa-
tion, in other implementations, user interface 800 may depict
less information, different information, differently arranged
information, and/or additional information than depicted in
FIG. 8.

In one example, a user may access user interface 900 by
selecting a menu option, by selecting aircraft system model
760, etc. As shown in FIG. 9, user interface 900 may include
a variety of information associated with a model (e.g., a
Stateflow model) for a collision detection system of an air-
craft. In one example, the model for the collision detection
system may include a gate block 910, a taxiway block 920,
and a runway block 930.

As further shown in FIG. 9, a location associated with the
aircraft may be determined by the model. For example, the
location may indicate that the aircraft is located at a gate (e.g.,
gate block 720, FIG. 7), at a taxiway (e.g., taxiway block 730,
FIG.7), or at arunway (e.g., runway block 740, FIG. 7). If the
aircraft is located at the gate, the flow may proceed to gate
block 910. If the aircraft is located at the taxiway, the flow
may proceed to taxiway block 920. If the aircraft is located at
the runway, the flow may proceed to runway block 930.

Gate block 910 may include a block that simulates aircraft
behavior at the gate. Based on the location of the aircraft at the
gate and the locations of other aircraft, gate block 910 may
determine whether the aircraft may potentially collide with
any of the other aircraft. If there is no potential for a collision
(i.e., the aircraft is safe), gate block 910 may do nothing. If
there is potential for a collision (i.e., the aircraft is too close to
another aircraft), gate block 910 may generate coordinates for
the aircraft (e.g., coordinates that avoid a collision).

Taxiway block 920 may include a block that simulates
aircraft behavior at the taxiway. Based on the location of the
aircraft at the taxiway and the locations of other aircraft,
taxiway block 920 may determine whether the aircraft may
potentially collide with any of the other aircraft. If there is no
potential for a collision (i.e., the aircraft is safe), taxiway
block 920 may do nothing. If there is potential for a collision
(i.e., the aircraft is too close to another aircraft), taxiway
block 920 may generate coordinates for the aircraft (e.g.,
coordinates that avoid a collision).

Runway block 930 may include a block that simulates
aircraft behavior at the runway. Based on the location of the

US 9,152,393 Bl

15

aircraft at the runway and the locations of other aircraft,
runway block 930 may determine whether the aircraft may
potentially collide with any of the other aircraft. If there is no
potential for a collision (i.e., the aircraft is safe), runway
block 930 may do nothing. If there is potential for a collision
(i.e., the aircraft is too close to another aircraft), runway block
930 may generate coordinates for the aircraft (e.g., coordi-
nates that avoid a collision).

Although user interface 900 depicts a variety of informa-
tion, in other implementations, user interface 900 may depict
less information, different information, differently arranged
information, and/or additional information than depicted in
FIG. 9.

If a user of dynamic system model 500 selects taxiway
block 730 (FIG. 7), user interface 1000 (FIG. 10) may be
displayed to the user. As shown in FIG. 10, user interface
1000 may include a variety of information associated with
taxiway block 730, such as a model (e.g., a SimEvents model)
for implementing aircraft dynamics at the taxiway. For
example, taxiway block 730 may include a taxiway ticket
pool block 1005, a start timer block 1010, an obtain taxiway
usage block 1015, an update takeoff stage block 1020, a get
aircraft ID block 1025, an update aircraft location block 1030,
a taxiway entry block 1035, a server block 1040, a release
based on taxiway location block 1045, a get taxiway location
block 1050, a server block 1055, a read aircraft coordinate
block 1060, a set taxiway location block 1065, a release
taxiway usage block 1070, and a read timer block 1075.

Taxiway ticket pool block 1005 may include a block that
includes a pool of tickets for aircraft entities 750. The tickets
may permit aircraft entities 750 to enter taxiway block 730.

Start timer block 1010 may include a block that starts a
timer associated with when a particular aircraft entity 750
enters taxiway block 730. The timer may be used to determine
how long the particular aircraft entity 750 has to wait at
taxiway block 730 before entering runway block 740.

Obtain taxiway usage block 1015 may include a block that
receives a ticket from taxiway ticket pool block 1005. When
obtain taxiway usage block 1015 receives the ticket, obtain
taxiway usage block 1015 may instruct the particular aircraft
entity 750 to enter taxiway block 730.

Update takeoff stage block 1020 may include a block that
updates a takeoff stage for the particular aircraft entity 750.
For example, update takeoff stage block 1020 may place the
particular aircraft entity 750 in a queue (e.g., a takeoff stage)
with other awaiting aircraft entities 750.

Get aircraft ID block 1025 may include a block that obtains
an identification of the particular aircraft entity 750. The
identification may include, for example, a flight number, a
serial number, or some other identifier associated with the
particular aircraft entity 750.

Update aircraft location block 1030 may include a block
that updates a location of the particular aircraft entity 750
based on the takeoft stage received from update takeoff stage
block 1020.

Taxiway entry block 1035 may include a block that permits
the particular aircraft entity 750 to enter taxiway block 730. In
one example, the particular aircraft entity 750 may be pro-
vided in a queue associated with taxiway block 730.

Server block 1040 may include a block that serves the
particular aircraft entity 750. For example, server block 1040
may move the particular aircraft entity 750 through the queue
associated with taxiway block 730.

Release based on taxiway location block 1045 may include
a block that permits the particular aircraft entity 750 to exit
taxiway block 730. For example, the particular aircraft entity
750 may exit taxiway block 730 and enter runway block 740.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

Get taxiway location block 1050 may include a block that
obtains a location of the particular aircraft entity 750 in taxi-
way block 730. For example, the particular aircraft entity 750
may be located in a particular position of the queue associated
with taxiway block 730.

Server block 1055 may include a block that updates the
location of the particular aircraft entity 750 in taxiway block
730.

Read aircraft coordinate block 1060 may include a block
that reads current coordinates associated with the particular
aircraft entity 750. Read aircraft coordinate block 1060 may
provide the current coordinates to set taxiway location block
1065.

Set taxiway location block 1065 may include a block that
sets a location of the particular aircraft entity 750 in taxiway
block 730 based on the current coordinates received from
read aircraft coordinate block 1060. For example, set taxiway
location block 1065 may set the particular aircraft entity 750
in a particular position of the queue associated with taxiway
block 730. Information associated with set taxiway location
block 1065 may be provided to taxiway entry block 1035.

Release taxiway usage block 1070 may include a block that
releases usage of taxiway block 730 by the particular aircraft
entity 750. For example, release taxiway usage block 1070
may enable the particular aircraft entity 750 to exit taxiway
block 730.

Read timer block 1075 may include a block that stops the
timer, started by start timer block 1010, and reads the timer.
The timer may be used to determine how long the particular
aircraft entity 750 waited at taxiway block 730 before enter-
ing runway block 740.

Although user interface 1000 depicts a variety of informa-
tion, in other implementations, user interface 1000 may
depict less information, different information, differently
arranged information, and/or additional information than
depicted in FIG. 10.

A user of dynamic system model 500 may dynamically
create and delete aircraft entities 750 (FIG. 7) using a function
(e.g., a MATLAB S-function) and three-dimensional anima-
tion (e.g., Simulink three-dimensional animation), via user
interface 1100 of FIG. 11. As shown in FIG. 11, user interface
1100 may include a variety of information associated with
dynamic system model 500. For example, user interface 1100
may include a function section 1110, a code section 1120, and
an animation section 1130.

Function section 1110 may enable a user of dynamic sys-
tem model 500 to create a user-definable block (e.g., aircraft
entities 750) using a function application programming inter-
face (API). Function section 1110 may enable the user to
specify a name and a list of one or more parameters for the
user-definable block.

Code section 1120 may display code associated with the
user-definable block created in function section 1110. In one
example, the code may be created by TCE 240 and may be
used to create information associated with one or more air-
craft entities 750 for dynamic system model 500.

Animation section 1130 may display a three-dimensional
(3D) animation associated with the user-definable block cre-
ated in function section 1110. As shown in FIG. 11, animation
section 1130 may display the user-definable block (e.g., a
matrix block) and information associated with a database
read by the user-definable block to create the three-dimen-
sional animation.

Although user interface 1100 depicts a variety of informa-
tion, in other implementations, user interface 1100 may

US 9,152,393 Bl

17

depict less information, different information, differently
arranged information, and/or additional information than
depicted in FIG. 11.

Example Process

FIGS. 12 and 13 are flow charts of an example process
1200 for providing dynamic entities for a model ofa graphical
modeling environment. In one implementation, process 1200
may be performed by client device 210 and/or TCE 240.
Alternatively, or additionally, process 1200 may be per-
formed by another device or a group of devices separate from
or including client device 210 and/or TCE 240, such as server
device 220.

As shown in FIG. 12, process 1200 may include receiving
and/or creating a dynamic system model for a graphical
model environment (block 1210), associating an entity, that
includes a model, with the dynamic system model (block
1220), and defining parameters, a configuration, and/or solver
settings for the entity model (block 1230). For example, in an
implementation described above in connection with FIG. 5,
TCE 240 may generate dynamic system model 500. Dynamic
system model 500 may include a block diagram model with
one or more model elements (e.g., blocks), one or more
inputs, and one or more outputs. In one example, dynamic
system model 500 may include entity generator block 510,
queue block 520, event generator block 530, and server block
540. Entity generator block 510 may generate one or more
dynamic entities 550 for dynamic system model 500. Each of
entities 550 may include an entity model of a particular type
(e.g., model type 1 through model type N). Entity generator
block 510 may provide setup information 560 to each of
entities 550. Setup information 560 may include parameters,
configurations, solver settings, etc. for the models of entities
550. A user may instruct TCE 240 to perform a simulation of
dynamic system model 500, or TCE 240 may automatically
perform a simulation of dynamic system model 500.

As further shown in FIG. 12, process 1200 may include
performing simulation of the dynamic system model (block
1240), generating a system event during simulation of the
dynamic system model (block 1250), and modifying the
parameters, the configuration, and/or the solver setting for the
entity model based on the system event (block 1260). For
example, in an implementation described above in connec-
tion with FIG. 5, event generator block 530 may receive
entities 550, and may generate system events 570 based on
information associated with entities 550 and/or based on
simulation of dynamic system model 500. System event 570
may include an event that affects dynamic system model 500.
Event generator block 530 may provide system events 570 to
one or more entities 550. Entities 550 receiving system events
570 may modify setup information 560 (e.g., the parameters,
configurations, solver settings, etc. for the entity models)
based on system events 570.

Returning to FIG. 12, process 1200 may include generating
an entity event during simulation of the dynamic system
model (block 1270), modifying the dynamic system model
based on the entity event (block 1280), and generating code
from the dynamic system model (block 1290). For example,
in an implementation described above in connection with
FIG. 5, server block 540 may receive entities 550 and/or
system events 570 from event generator block 530, and may
receive entity events 580 generated by entities 550. Entity
event 580 may include an event that is generated based on
changing conditions in an entity model (e.g., an aircraft may
unload passengers). Entity event 580 may modify behavior of
dynamic system model 500. In one example, if dynamic

10

15

20

25

30

35

40

45

50

55

60

65

18

system model 500 is an airport and entity event 580 includes
information regarding a particular aircraft taking off from the
airport, entity event 580 may modify dynamic system model
500 by removing entity 550 associated with the particular
aircraft. Server block 540 may generate simulation results
590 based on entities 550, system events 570, and/or entity
events 580. In one example, simulation results 590 may
include code generated from dynamic system model 500.

Process block 1290 may include the process blocks
depicted in FIG. 13. As shown in FIG. 13, process block 1290
may include one of generating the code to execute multiple
simulations of the dynamic system model on multiple cores,
a local cluster, and/or a remote cluster (block 1300), or gen-
erating the code to execute hardware-in-the-loop simulations
of the dynamic system model (block 1310). For example, in
an implementation described above in connection with FIG.
5, the code generated by server block 540 may execute mul-
tiple simulations of dynamic system model 500 using mul-
tiple cores of a single processor, using a local cluster of
computing devices, using a remote cluster of computing
devices (e.g., a cloud network), etc. Alternatively, or addition-
ally, the code may execute hardware-in-the-loop simulations
of' dynamic system model 500. In one example, some entities
550 may be connected to dynamic system model 500 as
physical hardware (e.g., a control system in a vehicle) while
other entities 550 may be connected to dynamic system
model 500 as simulation entities. Alternatively, all of entities
550 may be connected to dynamic system model 500 as
simulation entities.

CONCLUSION

Systems and/or methods described herein may provide
dynamic entities for a dynamic system model of a graphical
modeling environment (e.g., a TCE). In one example, the
dynamic system model may include blocks that represent an
overall dynamic system to be simulated (e.g., an airport, a
factory floor, etc.). The dynamic entities may include infor-
mation regarding individual objects (e.g., an aircraft, a part, a
robot, etc.) that may flow through the overall dynamic system.
The dynamic entities may include models with parameters,
configurations, solver settings, etc. that may be modified by a
user of the TCE and/or based on system events (e.g., an airport
runway may shut down) generated by the dynamic system
model. Alternatively, or additionally, the dynamic entities
may generate entity events (e.g., an aircraft may arrive at an
airport) that may modify a behavior of the dynamic system
model.

The foregoing description of implementations provides
illustration and description, but is not intended to be exhaus-
tive or to limit the implementations to the precise form dis-
closed. Modifications and variations are possible in light of
the above teachings or may be acquired from practice of the
implementations.

For example, while series of blocks have been described
with regard to FIGS. 12 and 13, the blocks and/or the order of
the blocks may be modified in other implementations. Fur-
ther, non-dependent blocks may be performed in parallel.

It will be apparent that example aspects, as described
above, may be implemented in many different forms of soft-
ware, firmware, and hardware in the implementations illus-
trated in the figures. The actual software code or specialized
control hardware used to implement these aspects should not
be construed as limiting. Thus, the operation and behavior of
the aspects were described without reference to the specific

US 9,152,393 Bl

19

software code—it being understood that software and control
hardware could be designed to implement the aspects based
on the description herein.

Further, certain portions of the implementations may be
implemented as a “component” that performs one or more
functions. This component may include hardware, such as a
processor, an application-specific integrated circuit (ASIC),
ora field-programmable gate array (FPGA), or a combination
of hardware and software.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
the specification. In fact, many of these features may be
combined in ways not specifically recited in the claims and/or
disclosed in the specification. Although each dependent claim
listed below may directly depend on only one other claim, the
disclosure of the specification includes each dependent claim
in combination with every other claim in the claim set.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential unless explic-
itly described as such. Also, as used herein, the article “a” is
intended to include one or more items. Where only one item
is intended, the term “one” or similar language is used. Fur-
ther, the phrase “based on” is intended to mean “based, atleast
in part, on” unless explicitly stated otherwise.

What is claimed is:

1. A device comprising:

one or more processors to:

receive a dynamic system model for a graphical model-
ing environment,
associate an entity with the dynamic system model,
the entity including an entity model,
define at least one of a parameter, a configuration, or a
solver setting for the entity model,
perform a simulation using the dynamic system model,
generate a system event during the simulation,
modify the at least one of the parameter, the configura-
tion, or the solver setting for the entity model based on
the system event,
generate an entity event during the simulation,
the entity event being generated by the entity based on
changing conditions in the entity model,
the entity event modifying a behavior of the dynamic
system model, and
generate simulation results associated with performing
the simulation using the dynamic system model.

2. The device of claim 1, where the system event is gener-
ated based on information associated with the entity, and

where the one or more processors are further to:

modify the dynamic system model based on the entity
event.

3. The device of claim 1, where the one or more processors
are further to:

generate code from the dynamic system model,

the simulation results including the code from the
dynamic system model.

4. The device of claim 3, where, when generating the code
from the dynamic system model, the one or more processors
are further to:

generate the code to execute multiple simulations using the

dynamic system model on one of:
multiple cores of a single processor,

a local cluster of computing devices, or
a remote cluster of computing devices.

5. The device of claim 3, where, when generating the code
from the dynamic system model, the one or more processors
are further to:

25

30

40

45

60

65

20

generate the code to execute a hardware-in-the-loop simu-

lation using the dynamic system model.

6. The device of claim 1, where the entity model includes
one of:

a first tool to model systems via state machines and flow

charts,

a second tool to model, simulate, and analyze dynamic

systems, or

a third tool to model and simulate physical systems.

7. The device of claim 1, where the at least one of the
parameter, the configuration, or the solver setting for the
entity model is defined by a user of the dynamic system
model.

8. A method, comprising:

receiving or creating a dynamic system model for a graphi-

cal modeling environment,
the receiving or creating the dynamic system model
being performed by one or more devices;
associating an entity with the dynamic system model,
the entity including an entity model,
the associating the entity being performed by the one or
more devices;

defining at least one of a parameter, a configuration, or a

solver setting for the entity model,

the defining the at least one of the parameter, the con-
figuration, or the solver setting being performed by
the one or more devices;

performing a simulation using the dynamic system model,

the performing the simulation being performed by the
one or more devices;

generating a system event during the simulation,

the generating the system event being performed by the
one or more devices;

modifying the at least one of the parameter, the configura-

tion, or the solver setting for the entity model based on

the system event,

the modifying the at least one of the parameter, the
configuration, or the solver setting being performed
by the one or more devices;

generating an entity event during the simulation,

the entity event being generated by the entity based on
changing conditions in the entity model,

the generating the entity event being performed by the
one or more devices; and

generating simulation results associated with performing

the simulation using the dynamic system model,
the generating the simulation results being performed by
the one or more devices.

9. The method of claim 8, further comprising:

modifying the dynamic system model based on the entity

event.

10. The method of claim 8, further comprising:

generating code from the dynamic system model,

the simulation results including the code.

11. The method of claim 10, where generating the code
from the dynamic system model further comprises:

generating the code to execute multiple simulations using

the dynamic system model on one of:
multiple cores of a single processor,

a local cluster of computing devices, or
a remote cluster of computing devices.

12. The method of claim 10, where generating the code
from the dynamic system model further comprises:

generating the code to execute a hardware-in-the-loop

simulation using the dynamic system model.

US 9,152,393 Bl

21

13. The method of claim 8, where the entity model includes
one of:

a first tool to model systems via state machines and flow

charts,

a second tool to model, simulate, and analyze dynamic

systems, or

a third tool to model and simulate physical systems.

14. The method of claim 8, where the at least one of the
parameter, the configuration, or the solver setting for the
entity model is defined by a user of the dynamic system
model.

15. One or more non-transitory computer-readable media
storing instructions, the instructions comprising:

one or more instructions that, when executed by a proces-

sor of a device, cause the processor to:
receive a dynamic system model for a graphical model-
ing environment,
associate an entity with the dynamic system model,
the entity including an entity model,
define at least one of a parameter, a configuration, or a
solver setting for the entity model,
perform a simulation using the dynamic system model,
generate a system event during the simulation,
the system event including an event that affects the
dynamic system model,
modify the at least one of the parameter, the configura-
tion, or the solver setting for the entity model based on
the system event,
generate an entity event during the simulation,
the entity event being generated by the entity based on
changing conditions in the entity model,
the entity event modifying a behavior of the dynamic
system model, and
generate simulation results associated with performing
the simulation using the dynamic system model.

20

25

22

16. The one or more non-transitory computer-readable
media of claim 15,
the instructions further comprising:
one or more instructions that, when executed by the
processor, cause the processor to:
modify the dynamic system model based on the entity
event.
17. The one or more non-transitory computer-readable
media of claim 15, the instructions further comprising:
one or more instructions that, when executed by the pro-
cessor, cause the processor to:
generate code from the dynamic system model,
the simulation results including the code.
18. The one or more non-transitory computer-readable
media of claim 17, the instructions further comprising:
one or more instructions that, when executed by the pro-
cessor, cause the processor to:
generate the code to execute multiple simulations using
the dynamic system model on one of:
multiple cores of a single processor,
a local cluster of computing devices, or
a remote cluster of computing devices.
19. The one or more non-transitory computer-readable
media of claim 17, the instructions further comprising:
one or more instructions that, when executed by the pro-
cessor, cause the processor to:
generate the code to execute a hardware-in-the-loop
simulation using the dynamic system model.
20. The one or more non-transitory computer-readable
media of claim 15, where the entity model includes one of:
a first tool to model systems via state machines and flow
charts,
a second tool to model, simulate, and analyze dynamic
systems, or
a third tool to model and simulate physical systems.

#* #* #* #* #*

